본문 바로가기

반응형

머신러닝 파이프라인

(2)
머신러닝 파이프라인 (4) 머신러닝 파이프라인을 구축할 때 고려해야 할 사항 기계 학습 파이프라인을 구축하는 것은 몇 가지 요소를 신중하게 고려하고 계획해야 하는 중요한 프로젝트입니다. 다음 내용에서 해당 요소들에 대해 알아보겠습니다. - 문제 및 데이터 이해: 먼저 해결하고자 하는 문제를 명확하게 정의합니다. 예를 들어, 고객 이탈을 예측하려면 먼저 고객 이탈 가능성을 나타내는 요소를 알아야 합니다. 이러한 이해는 모델 교육에서 사용할 기능 선택에서 모델 선택 자체에 이르기까지 파이프라인의 모든 단계에 영향을 미칩니다. 또한, 사용 가능한 데이터를 초기에 검사하여 그에 따라 파이프라인을 설계합니다. 예를 들어, 대부분의 데이터가 텍스트 기반인 경우, LPN(자연 언어 처리) 기술을 파이프라인에 통합하기를 원할 수 있습니다. - ..
머신러닝 파이프라인 (1) 데이터 과학의 영역을 탐색하다보면, "기계 학습 파이프라인"이라는 용어를 접할 수 있습니다. 이 기술은 원시 데이터가 가치 있는 통찰력으로 떠오를 때까지 다양한 단계를 거쳐 조정하는 전략적 과정으로, 기계 학습 파이프라인의 내부 작동, 그것의 이점, 그것이 제시하는 도전 및 실제 적용을 분석해보도록 하겠습니다. 머신러닝 파이프라인이란? 결론적으로 이 내용의 핵심은 머신 러닝(ML) 파이프라인으로 데이터를 원시 상태에서 머신 러닝 모델에 맞게 정교하고 가치 있는 상태로 이동할 수 있도록 하는 프로세스의 자동화된 시퀀스입니다. 핵심은 머신 러닝(ML) 파이프라인으로 데이터가 원시 상태에서 머신 러닝 모델에 맞게 정교하고 가치 있는 상태로 흐를 수 있도록 하는 자동화된 일련의 프로세스입니다. 예를 들어, 브라..

반응형