인공지능 편향 완화 (1) 썸네일형 리스트형 인공지능 알고리즘의 편향성과 공정성 (3) 인공지능 편향은 어디서 생기는가? 인간 리뷰의 편견 모델의 예측을 수용할지 또는 무시할지를 결정할 때 인간 검토자는 자신의 편견에 기초하여 올바른 모델 예측을 무시하고 자신의 편견을 도입할 수 있습니다. 이는 사람이 평가하는 동안 자신의 편견이 알고리즘에 영향을 미치도록 허용할 때 발생할 수 있으며, 이는 모델의 성능에 상당한 영향을 미칠 수 있습니다. 인공지능 편향을 완화하는 방법은? 편향 완화 전략을 적용하면 AI 알고리즘의 성능을 높일 수 있습니다. 즉, AI 시스템의 편향은 모델링 워크플로우의 세 단계를 통해 해결될 수 있습니다. 전처리: 데이터 과학자들은 편향을 감지하기 위해 원시 데이터에 대한 테스트를 실행하여 모델을 훈련시키기 전에 데이터 세트를 수정할 수 있습니다. 그런 다음 훈련 샘플에 .. 이전 1 다음