머신러닝 파이프라인 과제 (1) 썸네일형 리스트형 머신러닝 파이프라인 (3) 머신러닝 파이프라인 관련 과제 기계 학습 파이프라인은 AI의 강력한 자산이지만 특정 과제도 제시합니다. 첫 번째 과제는 파이프라인 자체를 설계하고 설정하는 것입니다. 파이프라인을 설정하고 유지하는 것은 복잡성, 필요한 전문 지식, 관련 비용 및 지속적인 모니터링 및 업데이트의 필요성으로 인해 어려울 수 있습니다. 이를 위해서는 데이터 처리 순서, 모델 교육, 평가 및 구축 단계의 신중한 조정이 필요합니다. 또한 이 초기 설정에는 소규모 단순 프로젝트의 경우 $10,000에서 대규모 조직의 복잡한 프로젝트의 경우 훨씬 더 많은 투자가 필요합니다. 파이프라인을 유지하는 것이 다음 과제입니다. ML 모델은 시간이 지남에 따라 입력 데이터와 목표 변수 사이의 관계가 변하는 "개념 드리프트"로 인해 종종 어려움을.. 이전 1 다음