본문 바로가기

반응형

인공신경망

(2)
생성 모델 (3) 인공신경망(Artificail Neural Networks) 인공 신경망(ANN)은 인간 뇌의 구조와 기능에서 영감을 받은 기계 학습 알고리즘입니다. ANN은 정보를 처리하고 입력 데이터를 기반으로 예측하는 상호 연결된 노드 또는 뉴런의 층으로 구성됩니다. ANN에서는 입력 데이터가 네트워크를 통해 전달되고, 모델 예측의 정확도를 향상시키기 위해 학습 중에 뉴런 간 연결의 가중치가 조정됩니다. ANN은 분류, 회귀 및 패턴 인식을 포함한 다양한 작업에 사용될 수 있습니다. 교통(Transportation) ANN은 교통 흐름을 최적화하고, 이동 시간을 예측하고, 대중 교통을 개선할 수 있습니다. ANN은 교통 흐름을 최적화하기 위해 교통 네트워크에서 차량, 보행자 및 기타 요소 간의 상호 작용을 모델링하..
인공신경망과 딥러닝의 이해 9.1 인공신경망의 이해 9.1.1 인공신경망의 구조와 구성요소 인공신경망은 인간의 뇌를 본따서 ㅁ나들어짐 뇌의 뉴런들은 수상돌기를 통해 다른 뉴런들로부터 입력신호를 받아들이고 변환과정을 수행한 후에 축삭돌기를 이용해 다른 뉴런에 전달 인공신경망에서는 노드가 뉴런과 같은 역할을 함 여러 노드에서 값을 받아 가중합을 계산하고 활성화 함수를 적용해서 값을 변환한 후 다음 노드로 전달 9.1.2 인공신경망에서의 학습 학습: 주어진 학습 데이터를 이용해 올바른 가중치를 찾아가는, 조정하는 과정 인공신경망은 입력값들에 대해 목표 출력값 혹은 실제 출력값을 매칭시킨 학습자료를 이용해서, 주어진 입력값에 대해 매칭되는 출력값을 예측할 수 있도록 가중치를 조정하는 지도학습 사용 9.1.3 손실함수의 이해 손실 함수: ..

반응형