8장 이미지 분류 - 합성곱 신경망 (3)
8-3 합성곱 신경망의 구조 - 렐루 함수 (ReLU) 0보다 큰 값은 그대로 통과, 0보다 작은 값은 0으로 - 렐루 함수 구현 def relu(x): return np.maximum(x, 0) x= np.array([-1, 2, -3, 4, -5]) relu(x) ##출력: array([0, 2, 0, 4, 0]) r_out = tf.nn.relu(x) r_out.numpy() ##출력: array([0, 2, 0, 4, 0]) - 렐루 함수의 도함수 입력이 0보다 크면 1 입력이 0보다 작으면 0 - 합성곱 신경망에서 일어나는 일들과 구조 합성곱 신경망에 주입될 입력 데이터에는 채널이 있음 이미지의 픽셀에 가진 색상의 표현하기 위한 정보인 채널(channel)이라는 차원 존재 빨간색(Red), 파란..