XAI (2) 썸네일형 리스트형 생성 모델 (7) 주요 특징 - AI 시스템은 우리의 일상 생활에 통합되어 있지만, 그들의 의사 결정 과정은 윤리적인 우려와 신뢰성에 대한 의문을 제기할 수 있습니다. - 연구자들은 AI 의사 결정에 대한 설명을 인간이 이해하기 쉬운 방식으로 제공하기 위해 설명 가능한 AI(XAI)에 대한 생성 모델의 사용을 탐구하고 있습니다. - 생성 모델은 입력 기능과 출력 레이블이 서로 어떻게 관련되어 있는지 학습하여 데이터의 기본 구조를 이해하려고 합니다. - 차별적 모델은 서로 다른 데이터 클래스 간의 경계를 학습하고 교육 데이터에서 학습한 내용을 바탕으로 새로운 데이터를 분류하는 데만 초점을 맞추고 있습니다. - SVM, 로지스틱 회귀 분석 및 인공 신경망은 차별적 모델의 예이며, 생성적 적대적 네트워크(GAN) 및 VAE(V.. 설명가능 인공지능 XAI(Explainable AI) 세계는 인공지능 시대로 빠르게 나아가고 있고, 우리는 인공지능 애플리케이션의 긍정적인 효과를 느끼고 있습니다. 하지만, 물론, 특정한 산업들은 그에 대한 영향이 크게 다가오고 있습니다. 인공지능과 관련되어 발생하는 수익은 2022년 말까지 620억 달러를 기록할 것으로 예측되었습니다. 따라서, 혁신과 기술 분야의 사람들은 사람들의 삶을 개선하기 위해 AI 애플리케이션을 더 많이 활용하는 방법을 찾으려고 노력하고 있고, 설명 가능한 인공지능에 대한 수요는 기하급수적으로 증가했습니다. 설명 가능한 인공지능 IBM은 "설명 가능한 인공지능(XAI)은 인간 사용자가 머신 러닝 알고리즘에 의해 생성된 결과와 출력을 이해하고 신뢰할 수 있도록 하는 일련의 프로세스와 방법입니다."라고 정의했습니다. 즉, 설명 가능한.. 이전 1 다음